
15

[Dus90] P. Dussud. TICLOS: An implementation of CLOS for
the Explorer Family.OOPSLA ‘89 Conference Proceed-
ings, pp. 215-220, New Orleans, LA, October 1989.

[ES90] Margaret A. Ellis and Bjarne Stroustrup.The Annotated
C++ Reference Manual. Addison-Wesley, Reading,
MA, 1990.

[GR83] Adele Goldberg and David Robson.Smalltalk-80: The
Language and its Implementation. Second Edition,
Addison-Wesley, Reading, MA, 1985.

[HC92] Shih-Kun Huang, Deng-Jyi Chen. Two-way Coloring
Approaches for Method Dispatching in Object-Oriented
Programming Systems.Proceedings of the Sixteenth
Annual International Computer Software and Applica-
tions Conference, pp. 39-44, Chicago, 1992.

[HCU91] Urs Hölzle, Craig Chambers, and David Ungar. Opti-
mizing Dynamically-Typed Object-Oriented Languages
with Polymorphic Inline Caches. InECOOP ‘91 Confer-
ence Proceedings, Geneva, 1991.

[HU94] Urs Hölzle and David Ungar. Optimizing dynamically-
dispatched calls with run-time type feedback. In
PLDI ‘94 Conference Proceedings, pp. 326-335,
Orlando, FL, June 1994.

[Joh87] Ralph Johnson. Workshop on Compiling and Optimizing
Object-Oriented Programming Languages.OOPSLA ‘87
Addendum to the Proceedings, 1988.

[KR90] Gregor Kiczales and Louis Rodriguez. Efficient Method
Dispatch in PCL.Proc. ACM Conf. on Lisp and Func-
tional Programming, 1990. Also in [Pae93].

[Kra83] Glenn Krasner.Smalltalk-80: Bits of History, Words of
Advice. Addison-Wesley, Reading, MA, 1983.

[Kro85] Stein Krogdahl. Multiple inheritance in Simula-like
languages.BIT 25, pp. 318-326, 1985.

[LVC89] Mark Linton, John Vlissides, Paul Calder. Composing
User Interfaces with Interviews. IEEE Computer 22(2),
pp. 8-22, February 1989.

[MS94] S. Milton and Heinz W. Schmidt.Dynamic Dispatch in
Object-Oriented Languages. Technical Report TR-CS-
94-02, The Australian National University, Canberra,
January 1994.

[Pae93] Andreas Paepcke (ed.).Object-Oriented Programming:
The CLOS Perspective, MIT Press, 1993.

[Ros88] John Rose. Fast Dispatch Mechanisms for Stock Hard-
ware.OOPSLA ‘88 Conference Proceedings, p. 27-35,
San Diego, CA, November 1988.

[Tar79] R.E.Tarjan, A.C.Yao. Storing a Sparse Table. Communi-
cations of the ACM, 22(11), November 1979, pp. 606-
611.

[Tho93] Kresten Krab Thorup. Optimizing Method Lookup in
Dynamic Object-Oriented Languages with Sparse
Arrays.Proceedings of the Annual SUUG Conference on
Free Software 1993, Moscow, Russia 1993.

[UP87] David Ungar and David Patterson. What Price Small-
talk? InIEEE Computer 20(1), January 1987.

[VH94] Jan Vitek and R. N. Horspool. Taming Message Passing:
Efficient Method Look-Up for Dynamically-Typed
Languages. InECOOP ‘94 Conference Proceedings,
Bologna, Italy, 1994.

[Vit94] Jan Vitek. Compact Dispatch Tables for Dynamically
Typed Object-Oriented Languages. M.S. Thesis, Univer-
sity of Victoria, B.C., forthcoming

[WGM88] A. Weinand, E. Gamma, and R. Marty. ET++—An
Object-Oriented Application Framework in C++.
OOPSLA ‘88 Conference Proceedings, pp. 46-57,
October 1988.



14

real-time systems that need to compute
performance guarantees.

• Compact dispatch tables. For large single-
inheritance class libraries, row displacement tables
are less than 0.5% larger than virtual function
tables. If multiple inheritance is used extensively,
row displacement outperforms virtual function
tables by a factor of two on the tested samples.

• Fast dispatch table construction. On a current
workstation, compression takes less than 2.5
seconds for most of the large class libraries
measured. This performance makes the technique
practical even for interactive programming
environments, especially if a second-stage dispatch
table is used to postpone global reorganization.

Thus, row displacement dispatch tables provide the
dispatch efficiency of virtual function tables, with
comparable memory cost and low compile time
overhead, for dynamically-typed object-oriented
programming languages.

Acknowledgments. We would like to thank those who
provided us with the relevant class library data: Robert
Griesemer for Digitalk Smalltalk 2.0 and 3.0, and
ParcPlace Visualworks Smalltalk 2.0, Juergen Wothke
for the ET++ and Unidraw/InterViews classes, Bernard
Coulange for LOV/Object Editor and Geode, Jan Vitek
for NextStep, and Gerald Aigner for VisualAge
Smalltalk.

References

[AGS94] Eric Amiel, Olivier Gruber, and Eric Simon. Optimizing
Multi-Method Dispatch Using Compressed Dispatch
Tables. InOOPSLA ‘94 Conference Proceedings, pp.
244-258, October 1994.

[AHU83] A.V.Aho, J.E.Hopcroft, J.D.Ullman.Data Structures
and Algorithms. Addison-Wesley 1983.

[AR92] P. André and J.-C. Royer. Optimizing Method Search
with Lookup Caches and Incremental Coloring.
OOPSLA ‘92 Conference Proceedings, Vancouver,
Canada, October 1992.

[CG94] Brad Calder and Dirk Grunwald. Reducing Indirect
Function Call Overhead in C++ Programs. In21st
Annual ACM Symposium on Principles of Programming
Languages, p. 397-408, January 1994.

[CUL89] Craig Chambers, David Ungar, and Elgin Lee. An Effi-
cient Implementation of SELF, a Dynamically-Typed
Object-Oriented Language Based on Prototypes. In
OOPSLA ‘89 Conference Proceedings, p. 49-70, New
Orleans, LA, October 1989.

[CU+91] Craig Chambers, David Ungar, Bay-Wei Chang, and Urs
Hölzle. Parents are Shared Parts: Inheritance and Encap-
sulation in SELF. Lisp and Symbolic Computation 4(3),
Kluwer Academic Publishers, June 1991.

[CPL83] T. Conroy and E. Pelegri-Llopart. An Assessment of
Method-Lookup Caches for Smalltalk-80 Implementa-
tions. In [GR83].

[DM73] O.-J. Dahl and B. Myrhaug.Simula Implementation
Guide. Publ. S 47, NCC, March 1973.

[DDH84] P. Dencker, K. Dürre, and J. Heuft. Optimization of
Parser Tables for Portable Compilers.TOPLAS6(4):546-
572, 1984.

[DS84] L. Peter Deutsch and Alan Schiffman. Efficient Imple-
mentation of the Smalltalk-80 System.Proceedings of
the 11th Symposium on the Principles of Programming
Languages, Salt Lake City, UT, 1984.

[D+89] R. Dixon, T. McKee, P. Schweitzer, and M. Vaughan. A
Fast Method Dispatcher for Compiled Languages with
Multiple Inheritance.OOPSLA ‘89 Conference Proceed-
ings, pp. 211-214, New Orleans, LA, October 1989.

[Dri93a] Karel Driesen. Selector Table Indexing and Sparse
Arrays. OOPSLA ‘93 Conference Proceedings, p. 259-
270, Washington, D.C., 1993.

[Dri93b] Karel Driesen.Method Lookup Strategies in Dynami-
cally Typed Object-Oriented Programming Languages.
Master’s Thesis, Vrije Universiteit Brussel, 1993.

[Dri94] Karel Driesen. Compressing Sparse Tables using a
Genetic Algorithm. InProceedings of the GRONICS ‘94
Student Conference, Groningen, February 1994.

[DHV95] Karel Driesen, Urs Hölzle, Jan Vitek. Message Dispatch
on Modern Computer Architectures.ECOOP ‘95
Conference Proceedings, Århus, Denmark, August 1995.



13

5.4 Applicability to interactive programming
environments

In an ideal interactive programming environment any
change to a program is reflected without noticeable
delay. Subsecond response time is required to optimize
programmer productivity. As discussed above, both
selector coloring and row displacement compression
are not fast enough to hide global refitting of dispatch
tables from the user.

Selector-based tables improve on class-based tables,
since a global reorganization is only necessary when a
new class is defined, because this adds a column to the
two-dimensional table and thus affect all rows. The
definition of a new message just adds a row. Presuming
that the compressed array has space for it, this does not
affect the other rows. For class-based tables, the
situation is similar but reversed: defining a new
message can affect all rows and cause reorganization.
Since new messages are defined more often than new
classes, selector-based row displacement is better tuned
to a development environment.

Still, when it occurs, global reorganization can be
painful. As outlined in [Dri93a], global refitting can be
postponed until there is time and opportunity, by
having a second-stage table that is searched when the
main table would deliver a “message not understood”
error. For selector-based tables, this second table holds
the newly defined classes. Message sends to instances
of new classes are slower than normal, until the classes
are incorporated in the main table.

Thus selector-based row displacement tables can be
employed in an interactive programming environment,
if the table fitting costs are postponed by using a
second-stage table, and at the cost of slower dispatch
for recently defined classes.

6. Related work

Compact selector-indexed dispatch tables [VH94]
compress the two-dimensional lookup table by
overlapping occupied as well as empty entries. A
tunable parameter of the algorithm determines how
similar two rows of the table must be before they can
share the same memory space. When two or more

overlapping entries store different method addresses, a
stub function is generated which performs the actual
dispatch. Thus message dispatch time is not constant.
By giving up this time constraint, the technique has a
different lower space bound than row displacement. In
[DHV95], dispatch tables are seven times smaller than
virtual function tables for theObject sample.

Two-way coloring [HC92] applies the selector coloring
principle to both selectors and classes, and also shares
occupied entries. By definition this technique needs to
check at run time both the actual class and selector for
a “message not understood” error. To our knowledge, it
has not been tested on real class libraries.

Sparse arrays [Tho93], used to implement Objective-C,
find a method through two indirections. The storage of
empty entries is reduced by dividing a dispatch table
into chunks of constant size, and not storing those that
are completely empty. No fill rates or other comparable
data is reported in [Tho93], so we can not compare the
memory requirements with our technique. However,
the dispatch speed of sparse arrays is lower because of
the double memory indirection.

Some dispatch techniques need no dispatch tables at
all, e.g., inline caching [DS84] and polymorphic inline
caching [HCU91]. The space overhead of these
methods is mainly due to the call site instructions that
implement the cache [DHV95]. In addition to data
structure size, the size of the dispatch code sequence
should therefore be taken into account when computing
table run-time memory requirements.

7. Conclusions

Selector-based row displacement makes table-based
message dispatching practical for dynamically-typed
languages. In particular, it combines the following four
desirable properties:

• Dispatch speed. As shown in [DHV95], dispatch
speed is similar to that of virtual function tables. At
run time, dispatch involves only an indirect call
and an equality comparison.

• Bounded dispatch time. The run-time dispatch
sequence executes a fixed number of instructions
for each lookup. This property can be important in



12

Fill rate (in %) Timing (in seconds)

System Library C S M SIO DIO DRO SIO DIO DRO

Parcplace Object w/o metaclasses383 4,026 61,775 99.5 99.5 99.4 0.3 0.9 0.2

Table 2: Compression speed (in seconds, on a 60Mhz SPARCstation-20)
C: number of classes S: number of selectors M: total of legitimate class-selector combinations
SIO: singly-linked freelist with index-ordered single-entry rows
DIO: doubly-linked freelist with index-ordered single-entry rows
DRO: doubly-linked freelist with reverse index-ordered single-entry rows

Smalltalk Object (Parcplace1) 774 5,086 178,230 99.7 99.7 99.6 1.7 4.3 0.4

Parcplace2 1,956 13,474 608,456 99.7 99.7 99.7 14.6 25.3 2.1

Digitalk Digitalk2 534 4,482 154,585 99.7 99.7 99.6 0.8 3.3 0.7

Smalltalk Digitalk3 1,356 10,051 613,654 99.8 99.8 99.8 5.9 13.5 1.6

IBM Smalltalk 2,320 14,009 485,321 99.8 99.8 99.5 32.3 11.4 5.2

Smalltalk VisualAge2 3,241 17,342 1,045,333 99.7 99.7 99.7 167.3 13.6 12.0

Objective-C NextStep 310 2,707 71,334 99.7 99.7 99.6 0.5 2.1 0.2

SELF Self System 4.0 1,801 10,103 1,038,514 99.8 99.8 99.8 9.4 2.4 2.5

C++ ET++ 370 628 14,816 98.5 98.4 97.6 0.04 0.05 0.04

Unidraw/Interviews 613 1,146 13,387 97.6 95.8 95.7 0.2 0.1 0.05

LOV Lov+ObjectEditor 436 2,901 36,052 95.8 91.1 91.1 0.8 0.3 0.2

Geode 1,318 6,555 302,717 74.9 70.8 70.8 49.0 9.6 9.0

entry rows in decreasing index order. Rows with more
than one entry are sorted in decreasing size, and ties are
broken by putting rows with smaller width first. In
Table 1, the resulting algorithm is indicated by DRO,
which stands for “doubly-linked freelist with reverse
index-ordered single-entry tables”.

5.3 Compression speed

Table 1 shows the fill rates of the three variants, and
timings as the average over 20 runs. Cache effects
caused a variation of less than 3%. We omitted the
smaller samples because the time was too small to be
reliably measured.

For all but the C++ and LOV samples, the fill rate is
largely independent of the particular algorithm used.
Fill rates vary slightly because the ordering of single-
entry tables trades memory for speed. The difference
between single and doubly-linked freelists, which is
most pronounced in the Geode sample, is caused by the
different order in which offsets are checked. SIO puts a
row in the first place that fits, starting from the left edge
of the compressed array. DIO and DRO also go from
left to right, but start with the freelist with the smallest
block size. There may be larger blocks to the left of a
smaller block, causing a table to be fitted further to the
right than strictly necessary.

The fastest algorithm in almost all cases is DRO. For
samples from the same programming environment,
there seems to be a linear relation between the number
of classes and the time needed to compress the tables.
For SIO, the relation appears quadratic (i.e., twice as
many classes take four times as long).

Absolute performance is excellent, especially
compared to previous techniques. For example, the
Object sample takes 0.4 seconds to compress (on a
SPARCstation-20) compared to the fastest class-based
row displacement algorithm in [Dri93b] which took 36
minutes on a Mac IIfx. For Object, selector coloring on
a Sun-3/80 took about 80 minutes to build the conflict
graph and 12 minutes to color it [AR92]. These timings
are measured on different hardware and with different
compilers, so that they cannot really be compared
directly. However, we believe it is safe to say that on
equivalent hardware, selector-based row displacement
compression constructs dispatch tables at least an order
of magnitude faster than these previous techniques.
Furthermore, the data shows that row displacement
compression is now a practical technique. Though
compression may still take too long for an interactive
environment, it can be postponed, as outlined in the
next section.



11

more consecutive entries or they cannot be linked into
the tree. Blocks of size five and smaller are not linked
at all. This not only complicates the maintenance of the
free list, but, more importantly, renders the algorithm
impractical for selector-based rows. As demonstrated
in section 3, the majority of selector-based rows is
smaller than six, whereas class-based rows have a
minimum size far exceeding that. The algorithm in
[Dri93b] is also more general than necessary, since it
can deal with arbitrarily large blocks. The maximum
block size in this particular problem is equal to the size
of the largest row, which is the number of selectors in
the system.†

Here we use the simpler approach of linking together
equally sized blocks. An array indexed by block size
contains pointers to the beginning of each separate
freelist. The algorithm proceeds as follows: to fit a row,
first determine the largest consecutive block of indices.
We call this the primary block. The row is represented
by the first index and the length of the primary block,
and the list of remaining indices. Start with the non-
empty freelist with block size greater than or equal to
the size of the primary block. Run through this freelist
and test, for each offset that positions the primary block
within the current free block, whether the remaining
indices match. If no match is found, try the freelist with
the next larger block size. Compared to the singly-
linked freelist algorithm, a match test is more efficient
since the entries of the primary block do not need to be
checked. Moreover, no time is wasted on free blocks
smaller than the primary block.

When a match occurs, the current block is removed
from its freelist, and, if it is larger than the primary
block, the space that remains left or right is inserted in
the freelist of the appropriate size. The free blocks over
which the remaining indices are positioned are also
split up. Then the row is copied into the compressed
array.

To remove them efficiently from their respective
freelists, blocks have to be doubly-linked. This implies
that the minimum size for a free block is two. After all
tables with primary block size of two or greater are
† Except for the huge chunk of free space in the right part of the
compressed array, which can be dealt with separately.

inserted, the algorithm reverts to the singly-linked
freelist algorithm outlined before, to fit the remaining
single-entry tables. In Table 1, the complete algorithm
is denoted by DIO, which stands for “doubly-linked
freelist with index-ordered single-entry tables”. It
performs better than SIO in a number of cases, but for
Smalltalk samples in particular, it is still puzzlingly
slow.

Profiling revealed that the algorithm spent an excessive
amount of time (up to 80%) checking uniqueness of
row offsets in the Smalltalk samples. This check only
happens after a match is found, and a hash table
implementation makes it an efficient operation.
Moreover, it should almost always succeed, since only
one in about fifty positions in the compressed array is
an offset. However, the offsets are not spread
randomly. Single-entry rows are fitted last to fill the
holes in the occupied part of the compressed array. If
there are more of such rows than necessary to fill the
remaining empty space, they cluster at the right end.
Finding open space for a one-entry row is trivial, but
finding a unique offset becomes time-consuming, as
illustrated in Figure 8.

We tried reordering the tables in a number of ways to
prevent the offsets from clustering prematurely. The
most spectacular improvement in speed, for a modest
decrease in fill rate, is reached by ordering the single-

Figure 8. One-entry row fitting

Rows with entries from 1 to 13, if fitted in
that order, cause a dense packing of offsets.
The last row checks on 8 free positions
before a free offset is found.

Entry 0 (offset position)

Single significant entry

Filled portion of array



10

5. Other implementation aspects

Dispatch table size is not the only criterium for
choosing a message dispatch technique. Run-time
performance and dispatch table construction time need
to be considered as well. Furthermore, the applicability
of a technique is dependent on the demands imposed
by the programming environment.

5.1 Run-time performance

In [DHV95], we showed that table-based techniques
have very similar run time performance.† On a 4-way
superscalar processor, the main difference between
virtual function tables and both selector coloring and
row displacement (class or selector-based) is that the
latter two techniques spend one or two cycles checking
for a “message-not-understood” error. In the statically-
typed case, where these errors are detected at compile
time, all three techniques have similar performance.‡

Both selector coloring and row displacement are
therefore dynamically typed alternatives to virtual
function tables.

5.2 Compression algorithms

We went through a number of implementations of the
dispatch table compression algorithm. In a nutshell,
this algorithm assigns to each row an offseto in the
compressed array, so that two conditions hold:

• o is not shared with any other row

• For every non-empty entry at indexi, o+i  is not
shared with any non-empty entry of any other row

Section 3 explained how a class numbering scheme
determines the indices within each row. Rows are fitted
in one run in order of decreasing size. Now the
problem is to find an offset for a row in a partially filled
compressed array in the least possible amount of time.
This problem is reminiscent of allocating a block of
memory in a memory management system (see
† For techniques with the minimal number of pointer indirections.
‡ Even in a dynamically-typed language these errors should not
occur in a finished product, so it is conceivable (barely, according
to one of the authors) to turn the run time checking off in shrink-
wrapped programs. However, this trick is similar to switching off
array bound checking in Pascal programs on delivery, a practice
generally abhorred.

[AHU83] for an overview), with the added
complication that blocks are fragmented.

Figure 3 suggests a simple algorithm for fitting a row
(represented by a collection of indicesi): start with
offseto = 0, check if all entrieso + i are empty. If not,
incremento and continue until a match occurs. Then
check if offseto is in the set of offsets that are already
used by fitted rows. If so, continue the search; if not,
insert the row ato and addo to the set of used offsets.

A simple improvement of the algorithm hops over used
space. Each unused entry in the compressed array
stores the index of the next empty entry. The algorithm
follows these links instead of checking every possible
offset. This reuse of free memory is similar to the
“freelist” concept in memory management systems. By
utilizing free memory resources to keep track of free
memory, the only cost associated with a smarter
algorithm is the time required for maintenance of the
freelist. When a row is fitted into the compressed array,
the entries it occupies are removed from the freelist.
This saves time, since a used entry is never checked
again, while in the simple algorithm it is checked once
for each row that fits to its right. The algorithm
outlined so far comprises the SIO algorithm in Table 2,
which stands for “singly-linked freelist with index-
ordered single-entry rows”. We will explain the latter
denotation later.

Although rows can be arbitrarily fragmented in
principle, in practice they usually consist of a large
block with a few “satellite” pieces if an adequate class
numbering scheme is used, as demonstrated in
section 3. Therefore, smarter, faster allocation schemes
can be adapted from memory management techniques
that deal with variable sized blocks. The key trick is to
test first for the largest consecutive block of a row, and
to organize the freelist so that one can easily enumerate
free blocks with a certain minimum size. Then the
highly fragmented free space which tends to
accumulate in the filled portion of the compressed
array is skipped when fitting large rows. In [Dri93b],
we implemented and tested an algorithm (BBBF) built
around a freelist which was actually a binary search
tree, ordered by size. The main disadvantage of this
technique is that free blocks must have a size of six or



9

Other techniques Selector-based row displacement

System Library C S M m P 2D SC VF CR AL SI MI

Set 9 94 450 144 - 53 65 - 81 90 98.3 -

Stream 16 126 1,122 210 - 56 65 - 82 93 99.7 -

Magnitude 18 240 1,381 568 - 32 52 - 78 93 99.2 -

Parcplace Collection 51 402 4,926 805 - 24 64 - 59 81 99.0 -

Smalltalk VisualComponent 53 529 4,253 875 - 15 60 - 56 91 98.8 -

Object w/o metaclasses383 4,026 61,775 6,835 - 4.0 62 - 48 95 99.4 -

Object (Parcplace1) 774 5,086 178,230 8,540 - 4.5 57 - 64 77 99.6 -

Parcplace2 1,956 13,474 608,456 23,720 - 2.3 57 - 55 72 99.7 -

Digitalk Digitalk ST/V 2.0 534 4,482 154,585 6,853 - 6.5 43 - 56 78 99.6 -

Smalltalk Digitalk ST/V 3.0 1,356 10,051 613,654 17,097 - 4.5 42 - 50 71 99.8 -

IBM IBM Smalltalk 2.0 2,320 14,009 485,321 25,994 - 1.5 32 - 63 56 99.5 -

Smalltalk VisualAge 2.0 3,241 17,342 1,045,333 37,058 - 1.9 43 - 55 47 99.7 -

Objective-C NextStep 310 2,707 71,334 4,324 - 8.5 53 - 51 89 99.6 -

SELF Self System 4.0 1,801 10,103 1,038,514 29,411 1.02 5.7 60 - 47 67 99.7 99.8

C++ ET++ 370 628 14,816 1,746 0.76 6.4 29 100 78 46 97.6 97.6

Unidraw/Interviews 613 1,146 13,387 3,153 0.78 1.9 23 100 62 44 95.6 95.7

LOV Lov+ObjectEditor 436 2,901 36,052 5,007 1.78 2.9 29 46.5 52 64 75.2 91.1

Geode 1,318 6,555 302,717 14,202 2.11 3.5 26 30.3 45 58 57.9 70.8

Table 1: Compression results (in fill rate %)
C: number of classes  S: number of selectors M: total of legitimate class-selector combinations
m: total number of defined methods P: average number of parents per class
Other techniques:
2D: uncompressed 2-dimensional class/selector table SC: selector coloring
VF: virtual function tables CR: class-based row displacement
Selector-based row displacement for different class numbering schemes:
AL: alphabetical order SI: single-inheritance scheme MI: multiple-inheritance scheme

4.3 Results

Table 1 shows the result of our measurements.
Selector-based row displacement performs very well
on single-inheritance samples (all samples with “-” in
column P). Fill rates are higher than 99.5% for all self-
contained examples, and more than 98% for the
smaller ones. The technique scales up well: contrary to
selector coloring and class-based row displacement,
compression improves as libraries grow in size. The
class numbering scheme is partly responsible for this
trend, as fill rates decrease similarly to selector
coloring, though not as fast, when classes are
numbered alphabetically. For dynamically-typed
languages, no other method comes close to the fill rate
of selector-based row displacement with depth-first
class numbering.

Multiple inheritance samples come in two kinds. If
multiple inheritance is rarely used, the results are
similar to those of single inheritance. Virtual function

tables have no overhead for single inheritance (i.e., a
100% fill rate), and therefore perform best on such
samples, with row displacement a close second. With
heavy use of multiple inheritance, fill rates decrease for
all methods, but by different amounts. As anticipated in
[Dri93a], selector coloring does not handle multiple
inheritance well. Virtual function tables do a little
better. Selector-based row displacement has the best fill
rate, though it also starts to have substantial overhead
for the largest sample.

To conclude, our experiments show that selector-based
row displacement tables have a very low space
overhead compared to other table-based methods. The
technique scales up well, improving the fill rate with
larger class libraries. Finally, it also handles multiple
inheritance in a robust way, outperforming other
methods by a factor of two if multiple inheritance is
heavily used.



8

rate of a technique asM divided by the actual number
of entries for which storage is allocated. For instance,
dividing M by the product of the number of classes and
the number of selectors calculates the fill rate of the
two-dimensional class/selector table.

Selector coloring (SC) [D+89, AR92] expresses table
compression as a graph coloring problem. The graph
represents selectors by nodes. An edge between two
nodes means that the corresponding two selectors
occur in the same class. The aim of the coloring
algorithm is to assign a color to each node of the graph
so that adjacent nodes have different colors, with as
few colors as possible. What this technique boils down
to in terms of the two-dimensional dispatch table is the
following: selector coloring compresses the table by
overlapping columns. Every selector is assigned a
column number. Two selectors can share a column if
none of their occupied entries have the same index
(i.e., they do not occur together in any class).

A lower bound for the number of columns is the size of
the largest row. This row corresponds to the class that
understands the largest number of messages.
Multiplying this number by the total number of classes
gives a lower bound to the number of entries of the
resulting data structure. DividingM by this lower
bound then gives an upper bound to the fill rate, which
is the quantity we show under column SC. It is
independent of the coloring algorithm used†.

Virtual function tables (VF) [DM73], the preferred
implementation of message dispatch in C++ compilers
[ES90], have no overhead for single inheritance class
libraries. Multiple inheritance incurs space overhead
because every base class requires its own virtual
function table, duplicating entries that are common to
two or more base classes. For example, in Figure 7,
classE has two virtual function tables, both of which
store a. The size of a class’s virtual function tables
equals the sum of its parents’ virtual tables plus the
number of newly defined (not overridden) messages.

For class-based row displacement (CR) we took the fill
rate reached by the heuristic described in [Dri93b].
† Since graph coloring is NP-complete, optimal coloring schemes
are approximated by polynomial-time algorithms.

This heuristic performed best on all samples except
Object, where Horn’s algorithm reached a better fill
rate (67% instead of 64%).

Selector-based row displacement is shown for three
variations in class numbering: alphabetical (AL),
depth-first pre-order traversal for a single-inheritance
hierarchy (SI), and depth-first pre-order traversal for a
multiple-inheritance hierarchy (MI). Fill rates are
shown for the fastest implementation of row
displacement, which trades some fitting tightness for
speed, as explained in section 5.2.

4.2 Samples

We choose sample class libraries taken from real
systems for three reasons: it facilitates comparison with
other methods, it eliminates the extra step of verifying
whether the real world behaves the same as the
artificial samples, and as an aside it gives us the
opportunity to gather some statistics from programs
with hundreds of classes, which is interesting in its
own right.

On the other hand, the data points do not cover the
realm of possible class libraries as evenly as we would
wish. Self-contained programs are usually large,
consisting of several hundred classes. To get an
impression of how the different techniques behave on
smaller examples, we also used subsets of the
Smalltalk inheritance structure. These are the first six
samples of Table 1. The next six samples are
comprised of all the classes of different Smalltalk
images: Parcplace Visualworks 1.0 and 2.0, Digitalk
Smalltalk 2.0 and 3.0, and VisualAge Smalltalk 2.0,
kernel and complete library. The next two samples are
NextStep, written in Objective-C, and the SELF system
4.0. The two C++ samples are the ET++ Application
Framework [WGM88] and Unidraw/InterViews
[LVC89]. Only the latter uses multiple inheritance, in
only 10 classes (the average number of base classes is
smaller than 1 because 147 of the classes in this library
have no base class). The last two samples are from
LOV, a proprietary language based on Eiffel. These
two make extremely heavy use of multiple inheritance:
on averageevery class inherits from two superclasses.



7

However, if multiple inheritance is used extensively, it
is worthwhile to spend time on a better numbering
scheme. We construct a single-inheritance hierarchy
from the multiple inheritance hierarchy by considering
only the dominant superclass link. The dominant
superclass is the class that makes the largest
contribution to the dispatch table. For example, in
Figure 7, classB is the dominant superclass of classE
becauseE inherits more messages throughB than
through any other of its superclasses. It is easy to see
why this choice produces the fewest number of gaps: if
a class inherits from several classes, it will be
numbered out of sequence in the subtrees of all classes
except one.† Thus it will cause a gap in the rows of all
message selectors it inherits, except the ones inherited
through its dominant base class. Therefore, choosing
the class through which a class inherits the largest
number of messages avoids more gaps than any other
choice.

Figure 7 shows the effect of two different choices for a
small example. Note that this rule minimizes the
number of gaps, not necessarily the sum total of gap
space (gray area). In fact, on the largest multiple
inheritance sample,Geode, our method enlarges gap
space by 13%, but increases fill rate by 11.2%.

3.4 Summary

In general, row displacement compression is a difficult
combinatorial optimization problem. However,
appropriate heuristics exploit the regularities that
inheritance imposes on dispatch tables, and give
excellent compression rates in practice. These “rules of
thumb” are the following:

• Slice the class/selector table by selector instead of
by class, because there are many more selectors
than classes and most selectors are understood by
only a few classes. These characteristics give rise
to many small rows, which are easier to fit tightly
together.

• Fit rows by decreasing size, to give small rows the
opportunity to fill up gaps left by larger rows.

† Exception: if a class number appears at the edge of a consecutive
block it may, by pure chance, be adjacent to the number of another
of its base classes.

• Number classes according to a depth-first pre-order
traversal of the inheritance structure, to force
occupied entries to cluster together.

• For multiple inheritance libraries: ignore all base
classes in the numbering scheme, except the base
class which understands the largest number of
messages.

4. Compression results

In this section we compare four variants of selector-
based row displacement with other table-based
message dispatch techniques on a number of large class
libraries. We will first discuss the way space overhead
is calculated, then briefly outline the test samples, and
finally discuss the results.

4.1 Methodology

To evaluate the effectiveness of table compression
techniques, we measure how close the table size
approachesM: the sum, over all classes, of the number
of messages understood by a class. This sum is the total
of legitimate class-selector combinations of a class
library. A message dispatch technique that finds a
method in a constant, small amount of time needs to
store each one of these combinations. We define thefill

Figure 7. Multiple inheritance class numbering

E is numbered as subclass of B (left) and as subclass of C
(right). Because selectors c and f are inherited through B,
and only d is inherited through C, choosing B avoids two
gaps and causes one.

a
A B CD E

0 1 01 0

b
c
d 5 5

e
f
g

F

0

6

8

G

0

bcf d

a
A B CD E

0 1 01 0

b
c 3 3 3

d 55

e 7

f 4 4 4

g 9

A a

B C

eD gE edF

F

0

6

8

G

G

0

2



6

exactly a subtree of classes, most rows in the selector-
based table consist of exactly one consecutive block of
occupied entries. For the single-inheritance hierarchy
of Figure 5, the new class numbering reduces the
number of gaps from four to one. The only selector
with a gap in its row ise, becausee is defined
separately in two classes (D and F), without being
defined in a common superclass.

Figure 6 shows the effect of the numbering scheme on
Magnitude. Figure 6a shows a selector-based table,
with the rows ordered in increasing size. 35% of the
total area is potential overhead (gray). As mentioned
before, this table resulted in 93% fill rate, so 7% of the
35% became real overhead. After renumbering classes,
only 1.6% potential overhead is left (Figure 6b), and
compression reduces this gray area to 0.5% real
overhead. Out of an array with 1388 entries, only 3 are
unoccupied, and even these gaps are caused by
contention over row offsets by one-entry rows, not by
true fitting conflicts (remember that all rows need to
have unique offsets in the compressed array). Later, in
section 4, we will present compression results for
several other single inheritance class libraries.

3.3.2  Multiple inheritance

The depth-first numbering scheme can easily be
applied to a multiple inheritance class library. The only
difference to single inheritance is that a class with more

bcf d

A a

B C

eD gE edF

G

A

B C

D E F

G

0

1

2

3 4

5 6

a
A B C D E

0 1 0 1 0

b
c
d
e
f
g

F

0

G

0

2

a
A B CD E

0 1 01 0

b
c 3 3

d 5 5

e 7

f 4 4

g 9

F

0

6

8

G

0

2

0 1 42 5 63

Figure 5. Alphabetic and depth-first class numbers

than one direct superclass (a.k.a. base class) will be
visited more than once. Since a class is numbered the
first time it is encountered, its number will depend on
the order in which subclasses are traversed. We found
that an essentially random choice is good enough if
multiple inheritance is not used frequently, as in the
Unidraw/Interviews sample of section 4.

(a) (b)

Figure 6. Magnitude: selector-based tables

with classes numbered:
(a) alphabetically
(b) depth-first preorder
In both (a) and (b) the selectors are first
ordered according to size, and then according
to class number.



5

space that a row can occupy under row displacement.
We call this quantity the width of a row vector. The
white area is free because leading and trailing empty
space can overlap with other rows. Figure 4c is the
same as 4b, but with selectors reordered by size to
better show the distribution. Figures 4d and 4e show
the same for a class-based table, rotated 90 degrees.

The black area represents a lower bound on the size of
the compressed array; black and gray together
represent an upper bound. If all rows were placed
consecutively, the size of the compressed array would
be the sum of all the row widths. Gray area can thus be
consideredpotential overhead.

When comparing Figure 4c with Figure 4e, it becomes
clear why a selector-based table does better than a
class-based table: almost one third of the selector-
based rows have only one occupied entry. These ultra-
small rows are ideal to fill up gaps left by other rows.
Class-based rows on the other hand have a minimal
size of nine. The difference tends to get worse as
libraries grow larger. For example, in VisualWorks 1.0
every class understands at least 100 messages, but 45%
of the messages are only known by one class, and
another 39% by less than ten classes. Furthermore, the
potential overhead (gray area) for the selector-based
table in Figure 4 is much smaller than that of a class-
based table. Thus a selector-based table has less area to
fill up, and better material to fill it up with.

Without further efforts, selector-based row
displacement already outperforms the most
sophisticated class-based row displacement schemes.
For Magnitude, the best fill rate reached in [Dri93b] is
80%, while the structure shown in Figure 4b gives a
compressed array that is 87% occupied. This difference
becomes larger as class libraries grow larger, as we will
see in section 4.

3.2 Fitting order

The previous section demonstrated that class- and
selector-based tables have different row size
distributions. This section and the next explains how to
exploit this difference to its fullest in an actual
implementation.

Since it is not practical to look for the best possible
configuration, i.e., to look for offsets that minimize
total overhead,† we fill the compressed array in one
pass. Rows are inserted into the first place that fits, but
we still have the freedom to choose the order in which
rows are inserted. Figure 4b shows the alphabetical
order, which is an arbitrary one from an algorithmic
perspective; as mentioned before, it achieves 87% fill
rate. Figure 4c shows the rows ordered by size. We
start with the largest rows and work from there to the
smaller ones. Intuitively, this arrangement gives
smaller rows a better chance to fill up holes left by
bigger ones. ForMagnitude the fill rate does indeed
improve to 93%. Larger samples exhibit a smaller
difference but consistently favor the size-ordered
scheme.

Surprisingly, sorting rows according to descending size
does not slow down the algorithm. Because the time
needed to fit all rows is proportional to the average
number of unoccupied entries that is checked before a
fitting space is found, a denser compression is reached
in a shorter time. Thus the gain in speed caused by the
better fill rate compensates for the extra time needed to
sort rows.

3.3 Class numbering

Now that we have established the ordering of selectors,
this section will show how classes can be numbered to
enhance the fill rate further.

3.3.1  Single inheritance

If we look back at Figure 3, it is obvious that
exchanging column D and C makes the fitting process
trivial, because no gaps are left in any rows. A class
numbering scheme that minimizes the number of gaps
in a selector-based table is illustrated in Figure 5. The
aim is to make sure that all classes that understand a
certain message have consecutive numbers. Our
scheme numbers classes by traversing the inheritance
tree in depth-first pre-order. This numbering scheme
ensures that every subtree in the inheritance structure
corresponds to a consecutive block of class numbers.
Since most message selectors are understood by
† This problem is NP-complete [Tar79] and thus takes too long to
solve, or even to approximate [Dri94].



4

illustrates why. Figure 4b is constructed from 4a by
squeezing occupied entries (in black) together.† The

† This figure does not correspond to an actual data structure in the
compression algorithm. It is given only to illustrate the character-
istics of rows in a selector-based table.

width of the black rows thus indicates the number of
occupied entries of that row. The gray area represents
unoccupied space that is not leading or trailing the row,
but is enclosed by occupied entries to its left and right.
Thus black and gray area together give the maximum

24
0

18

(a) (b) (c) (d) (e)

Figure 4. Table size distribution forMagnitude(18 classes, 240 selectors).

(a) two-dimensional table that results when classes and selectors are alphabetically
sorted.

(b) size of selector-based tables: occupied entries in black, intermittent spaces in gray,
leading and trailing spaces in white (not visible). The arrow indicates the direction
of rows.

(c) same as (b), but selectors are ordered according to size
(d) same as (b), but rows are oriented differently (see arrow)
(e) same as (d), but classes are ordered according to size

original table selector-based rows class-based rows



3

of type C will generate a “message not understood”
error.

Row displacement reduces this empty space by
compressing the two-dimensional table. As illustrated
in Figure 2, each row is shifted by adifferent amount
until there is only one occupied entry on each column.
Then this structure is collapsed into a one-dimensional
array. A message send ofc to an object of classD is
translated to the addition of the selector number ofc (2)
to the address ofD (5), giving 7, which is the address
of the correct entry in the compressed array, assuming
that all class numbers, selector numbers, and array
indices start from 0. In order to detect a “message not
understood” error, the method tests whether the
selector for which it is called (2) is the same as that for
which it is defined (c, so 2). This test avoids the
incorrect execution ofc if d (3) was sent to an object of
typeC (4).

This mechanism does notguarantee that most of the
overhead will disappear. A straightforward application
of row displacement compression on theObject sample
results in a compressed array with only 11% occupied
entries [Dri93a]. In general, table compression by row
displacement is NP-complete [Tar79]. However, when
the subject matter is a collection of message dispatch
tables, appropriate heuristics can exploit the regularity
imposed by a library’s inheritance structure. In
[Dri93b], class-based row displacement reached a 67%
fill rate by renumbering columns so that occupied
entries cluster together.

3. Selector-based row displacement

In this section we will explain howselector-based row
displacement works, and why it works well. The idea
of selector-based row displacement is simple: do
exactly the same as class-based row displacement, but
slice the two-dimensional table up according to
selectors, instead of classes (see Figure 3 for the same
class library as in Figure 2). At run time, the lookup
process is similar, with the role of classes and selectors
reversed. However, for the “message not understood”-
test, the method still tests whether the called and
definedselector are equal.

This simple change dramatically improves the fill rate
(i.e., reduces the size) of the compressed array.
Selector-based tables have less overhead than class
tables for two reasons: their row size distribution
makes it easier to tightly pack rows together and their
message definitions cluster in a more regular way
under inheritance, which reduces the amount of gaps
within rows. Both of these aspects can be exploited by
an appropriate class numbering scheme.

3.1 Distribution of row sizes

Figure 4a shows the two-dimensional dispatch table for
the Smalltalk classMagnitude and its subclasses.
Although this example is an artificial collection of
classes (in the sense that it does not constitute a
complete program), it does demonstrate the
characteristic size distributions found in larger, realistic
samples.

To begin with, the number of classes is much smaller
than the number of message selectors. Therefore the
average size of class-based rows will be much larger
than that of selector-based rows. In [Dri94], we found
that row displacement compression works better, in
general, with many small rows than with few large
ones. Thus a selector-based table is likely to be
compressed better than a class-based table. Although
not all the cases we tested exhibit as large a difference
as Magnitude, usually the number of selectors is at
least twice the number of classes. This asymmetry
accounts for part of the better fill rate of selector tables.

In addition to the average row size, thedistribution of
row sizes also has an impact on the fill rate. Figure 4b

g fed cba

Figure 3. Selector-based row displacement tables.

a
A B C D E

0 3 0 5 0

b 7

c 1 1

d 8

e 4 4 4

f 2 2

g 6

2 2Compressed array0 3 0 5 0 7 1 18 4 4 4 6

a 0 3 0 5 0

b 7

c 1 1

d 8

e 4 4 4

f 2 2

g 6



2

However, it is possible to compress the two-
dimensional table while preserving constant lookup
time. Selector coloring [AR92] assigns selectors to
columns. Two distinct selectors can occupy the same
column if, for any give class, at most one of them is
understood by objects of this class. By allowing these
columns to overlap, empty entries are re-used. An
alternative compression technique is class based row
displacement compression [Dri93a], outlined in
section 2. Unfortunately, both techniques are only
partially successful, since the generated data structure
still contains at least 40% unoccupied entries for the
previously mentioned class library.

In this paper we show how to eliminate virtually all
unused entries from the dispatch table while preserving
constant lookup time, by applying row displacement
compression on a selector-based table. The technique is
applicable to dynamically-typed object-oriented
programming languages and handles multiple
inheritance well. The generated dispatch tables are
almost as small as virtual function tables while
delivering comparable dispatch speed.

The paper is organized as follows: first we briefly
recapitulate row displacement dispatch tables as
presented in [Dri93a]. In section 3 we explain the
reasoning behind selector-based tables and their
mechanics. Section 4 presents measurements from a
number of large samples from different languages and
compares with selector coloring, virtual function tables
and class-based row displacement. Section 5 discusses

aspects of row displacement that are not related to
memory, such as run time efficiency, row displacement
algorithm efficiency and the applicability of the
technique in interactive programming environments.

2. Class-based row displacement dis-
patch tables

In this section we briefly review class-based row
displacement dispatch tables, previously presented at
OOPSLA ‘93 as “sparse arrays”[Dri93a]†.

The inheritance structure in Figure 2 consists of 5
classes (uppercase letters), on which 7 different
messages are defined (lowercase letters). Objects of
classD, for instance, understand messagesa and g,
defined inD, andc, f ande, inherited fromB andC. At
run time, inherited definitions are found by recursively
visiting parent classes.

An implementation does not need to mimic the lookup
process explicitly. As long as the inheritance structure
remains unchanged, all dispatches can be calculated in
advance; only dynamic inheritance [CU+91] precludes
this optimization. The two-dimensional table depicted
in Figure 2 stores pre-calculated messages. The empty
elements represent illegal combinations of classes with
message selectors. For instance, sendingb to an object
† In [DDH84], the term “row displacement compression” was
coined for a very similar approach in parser table compression. We
also want to avoid confusion with [Tho93], where the term “sparse
array” is used for a one-dimensional array that is compressed by
dividing it in equally large chunks and not storing the empty ones.

3B 1 2

A a

B acf C e

E bdD ag

Figure 2. Class-based row displacement dispatch tables

3B 1 2

0A

0C 4

5D 1 4 2

0E 7 48

a b c e fd

6

g

Row displacement starts from the two-dimensional table that associates a selector-class pair
(lower- and uppercase letter in the figure, numbers in an implementation) with a method (a
code address, in the figure represented by a number). A certain displacement is assigned to each
row (class), to fit rows together in a one-dimensional array. Two conditions make sure that
methods are retrieved correctly from this array: every entry is occupied by at most one method,
and every row has a unique displacement.

A CB ED
0Compressed array 3 0 51 2 1 4 4 6 02 7 8 4

0A

0C 4

5D 1 4 2

0E 7 48

6



Abstract: Row displacement dispatch tables
implement message dispatching for dynamically-
typed languages with a run time overhead of one
memory indirection plus an equality test. The
technique is similar to virtual function table lookup,
which is, however, restricted to statically typed
languages like C++. We show how to reduce the space
requirements of dispatch tables to approximately the
same size as virtual function tables. The scheme is
then generalized for multiple inheritance. Experiments
on a number of class libraries from five different
languages demonstrate that the technique is effective
for a broad range of programs. Finally, we discuss
optimizations of the row displacement algorithm that
allow dispatch table construction of these large
samples to take place in a few seconds.

1. Introduction

Message dispatch is the quintessential feature of
object-oriented languages. Given an object and a
message selector, message dispatch finds the
implementation of the message that corresponds to the
object’s class†. Unless the exact class of a receiver is
known at compile time, this search process occurs at
run time. Since message sends are frequent in object-
oriented programs, message dispatch must be efficient.

† Although not all object-oriented languages make the class
concept visible to a programmer, there is usually a structure that
implements shared behavior efficiently, for example ‘maps’ in
SELF [CUL89].

Static dispatch techniques speed up the search process
by precomputing the target for all possible class/
selector pairs and storing the results in a lookup table.
A naive implementation of this table is a large two-
dimensional array, indexed by class and selector
number (see Figure 1). At run time, message dispatch

consists of an array indexing operation and an indirect
branch. However, most messages are understood by
only a few classes, so the rows of this array are mostly
empty. In fact, for the Visualworks 1.0 Smalltalk class
library, the table would contain fewer than 5%
occupied slots out of a total of 3.75 M entries[Dri93b].

In a statically-typed language like C++, the compiler
can renumber selectors for each class and its
subclasses. Only inherited selectors must keep their
originally assigned index. Single inheritance makes it
possible to generate rows without gaps and minimal
length. This forms the basis of the well-known virtual
function tables [DM73, ES90].

In a dynamically-typed language the sender of a
message does not know the class of the receiver.
Therefore, if the selector number is to be used as an
index, it must be globally unique. This precludes the
use of virtual function tables, where identical selectors
can have different numbers in unrelated classes.

Class # c

Selector # s

Method
implementing
s for class c

Figure 1. Table-based dispatch

Minimizing Row Displacement Dispatch Tables

Karel Driesen and Urs Hölzle
Department of Computer Science

University of California
Santa Barbara, CA 93106
{karel,urs}@cs.ucsb.edu

http://www.cs.ucsb.edu/{~karel,~urs}

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed
for direct commercial advantage, the ACM copyright notice
and the title of the publication and its date appear. Copied by
by permission of the Association of Computing Machinery.

OOPSLA 95- 10/95 Austin, Texas USA
 1995 ACM

Technical Report TRCS 95-05, Department of Computer Science, University of California, Santa Barbara, July 1995. UCSB CS reports are available via ftp from
ftp.cs.ucsb.edu.


